
Tony Mullins Griffith College Dublin 1

Bags

Tony Mullins Griffith College Dublin 2

Bags
A bag is a multi valued set that allows
duplicates.

Constructor
bag of <type>{comma separated list};

bag of int{1,2,3,1,3};
bag of Money{Money{20}};
bag of Money{};

Tony Mullins Griffith College Dublin 3

Bags

x # bag1 returns frequency of occurrence
of x in bag1

x in bag1 returns true if x is an element of
bag1; otherwise false

#bag1 returns number of elements in
bag1

bag1.max returns the maximum element in
bag1

bag1.min returns the minimum element in
bag1

Tony Mullins Griffith College Dublin 4

Bags
bag1.unique returns true if all elements

are unique; false otherwise

bag1.ran returns a set of the elements in
bag1 – duplicates removed

bag1.rep(n) returns a bag with each element
replicated n times.

Tony Mullins Griffith College Dublin 5

Bags
const b1 : bag of int
 ^= bag of int{1,2,3,1,1,3};
property assert 1 # b1 = 3;
property assert 2 in b1;
property assert #b1 = 6;
property assert b1.max = 3;
property assert b1.ran = set of int{1,2,3};
property assert b1.unique = false;

Tony Mullins Griffith College Dublin 6

Bags
property assert bag of int{1,2,3}.rep(2)

= bag of int{1,1,2,2,3,3};

Tony Mullins Griffith College Dublin 7

Bags
Bag addition(union)

b1 ++ b2 returns the union of b1 and b2. It is
defined as:
operator++(a: bag of X): bag of X
 satisfy forall x:X :-

 x # result = x # self + x # a;

property assert
bag of int{2,5,5,6} ++ bag of int{2,5,7} =

bag of int{2,2,5,5,5,6,7};

Tony Mullins Griffith College Dublin 8

Bags
Bag intersection

b1 ** b2 returns the intersection of b1 and b2. It
is defined as:
operator**(a: bag of X): bag of X
 satisfy forall x:X :-

x # result = min(x # self, x # a);

property assert
bag of int{2,5,5,6} ** bag of int{2,5,7} =

bag of int{2,5};

Tony Mullins Griffith College Dublin 9

Bags
Bag difference

b1 -- b2 returns a bag of elements x whose
frequency is max(x#b1 � x#b2,0). It is defined
as:
operator -- (a: bag of X): bag of X
 satisfy forall x:X :-

x # result = max(x # self - x # a, 0);

property assert
bag of int{2,5,5,6} -- bag of int{2,5,7}
= bag of int{5,6};

Tony Mullins Griffith College Dublin 10

Bags
Bag inclusion

b1 <<= b2 returns true if all the elements of b1
are contained in b2; false otherwise. It’s
definiton is:

 operator<<=(a: bag of X): bool
 ^= forall x::self :- x # a <= x # self;

Tony Mullins Griffith College Dublin 11

Bags
b.append(x) returns a new bag that is the

same as b with the frequency of
occurrences of x is increased by 1

b.remove(x) returns a new bag that is the
same as b with the frequency of
occurrences of x is decreased by
1, if x is an element of b.

Example
bag of int{1,2,3}.append(3) = bag of int{1,2,3,3};
bag of int{1,2,3}. remove(3) = bag of int{1,2};

Tony Mullins Griffith College Dublin 12

Bag Example
class BagEx ^=
abstract

var
 data : bag of int;

interface
function data;
function frequency(x : int): nat
 ^= x # data;
function cardinality : nat
 ^= #data;

Tony Mullins Griffith College Dublin 13

BagEx

function evenBag : bag of int
 ^= those y :: data :- y % 2 = 0;

function allPositive : bool
 ^= forall y :: data :- y > 0;

Tony Mullins Griffith College Dublin 14

BagEx
schema !add(x:int)
 post data! = data.append(x);
schema !add(b : bag of int)
 post
 data! = data ++ b;
build{}

post data! = bag of int{};
end;

Tony Mullins Griffith College Dublin 15

Specify a Purse
Specify a class to model a purse of coins. The
purse may contain multiple instances of the same
coin.

Solution
1. Specify class Coin
2. Specify class Purse

Tony Mullins Griffith College Dublin 16

Coin

class Coin ^=
 abstract

var
 coin : nat;
invariant
 coin in set of nat{1,2,5,10,20,50,100,200};

Tony Mullins Griffith College Dublin 17

Coin
interface

function coin;
redefine function toString : string
 ^=
 ([coin in set of nat{1,2,5,10,20,50}]:
 coin.toString++"Cent",
 []:
 (coin/100).toString ++ "Euro"
);

Tony Mullins Griffith College Dublin 18

Coin

operator +(other:Coin):nat
 ^= coin + other.coin;

 operator +(other : nat) : nat
 ^= coin + other;

Tony Mullins Griffith College Dublin 19

Coin
 operator ~~(other)

 ^= coin ~~ other.coin;

build{x : nat}
 pre
 x in set of nat{1,2,5,10,20,50,100,200}
 post

 coin! = x;
end;

Tony Mullins Griffith College Dublin 20

Purse

A purse is a bag of coins that has the following
schemas:
– add a coin
– add a bundle of coins
– remove a coin
– remove a sum of money

Tony Mullins Griffith College Dublin 21

Purse
It should have functions that return:

– all the coins in the purse
– the frequency of a given coin
– the total value of a given coin
� true if a given coin is contained in the purse; false

otherwise
– the set of coins in the purse
– the total value of all coins in the purse
� true if the purse contains a bag of coins whose value

equals some given amount of money; false otherwise
– that bag of coins in the purse whose sum equals some

given value

Tony Mullins Griffith College Dublin 22

Purse
import "Coin.pd";
class Purse ^=
abstract

var
 purse : bag of Coin;

interface
 �
 build{}

post purse! = bag of Coin{};
build{x : bag of Coin}
 post purse! = x;

end;

Tony Mullins Griffith College Dublin 23

Purse
All coins in purse

function purse;

Frequency of a given coin in purse
 function freqCoin(c : Coin): nat
 ^= c # purse;

Total value of a given coin
 function valueOfCoins(c : Coin) : nat
 ^= (c # purse)*c.coin;

Tony Mullins Griffith College Dublin 24

Purse
Check if a given coin is contained in the purse

function contains(c : Coin) : bool
 ^= c in purse;

The set of different coins in the purse
function listOfCoin : set of Coin

 ^= purse.ran;

Tony Mullins Griffith College Dublin 25

Purse
Total value of all coins in the purse

function sum : nat
 ^= sum(purse);

where
function sum(p : bag of Coin) : nat

 decrease #p
 ^=

 ([#p = 0] : 0,
 []: (let t ^= any p;
 (t + sum(p.remove(t)))
)
);

Tony Mullins Griffith College Dublin 26

Purse
The purse contains a bag of coin whose sum equals a given
value

function containsSum(x : nat) : bool
 ^= (exists b:bag of Coin :-

 b <<= purse & sum(b) = x);

Tony Mullins Griffith College Dublin 27

Purse
Retrieve a bag of coin whose sum equals a given value

function bagCoins(x : nat) : bag of Coin
 pre containsSum(x)
 satisfy (result <<= purse & sum(result) = x);

Retrieve a bag of coin whose sum is at least a given value

function bagCoins1(x : nat) : bag of Coin
 pre containsSum(x)
 satisfy (result <<= purse & sum(result) >= x);

Tony Mullins Griffith College Dublin 28

Purse
Add Schemas

schema !add(c : Coin)
 post
 purse! = purse.append(c);

schema !add(b : bag of Coin)
 post
 purse! = purse ++ b;

Tony Mullins Griffith College Dublin 29

Purse
Remove Schemas

schema !take(c : Coin)
 pre c in purse
 post purse! = purse.remove(c);

schema !take(x : nat)
 pre x > 0 & containsSum(x)
 post
 purse! = purse -- bagCoins(x);

	Bags
	Bags
	Bags
	Bags
	Bags
	Bags
	Bags
	Bags
	Bags
	Bags
	Bags
	Bag Example
	BagEx
	BagEx
	Specify a Purse
	Coin
	Coin
	Coin
	Coin
	Purse
	Purse
	Purse
	Purse
	Purse
	Purse
	Purse
	Purse
	Purse
	Purse

