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Bags
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Bags
A bag is a multi valued set that allows
duplicates.

Constructor
bag of <type>{comma separated list};

bag of int{1,2,3,1,3};
bag of Money{Money{20}};
bag of Money{};
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Bags

x # bag1  returns frequency of occurrence
of x in bag1

x in bag1 returns true if x is an element of
bag1; otherwise false

#bag1 returns number of elements in 
bag1

bag1.max returns the maximum element in
bag1

bag1.min  returns the minimum element in
bag1
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Bags
bag1.unique returns true if all elements 

are unique; false otherwise

bag1.ran returns a set of the elements in 
bag1 – duplicates removed

bag1.rep(n) returns a bag with each element
replicated n times.
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Bags
const b1 : bag of int
   ^= bag of int{1,2,3,1,1,3};
property assert 1 # b1 = 3;
property assert 2 in b1;
property assert #b1 = 6;
property assert b1.max = 3;
property assert b1.ran = set of int{1,2,3};
property assert b1.unique = false;
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Bags
property assert bag of int{1,2,3}.rep(2)

= bag of int{1,1,2,2,3,3};
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Bags
Bag addition(union)

b1 ++ b2 returns the union of b1 and b2. It is
defined as:
operator++(a: bag of X): bag of X
     satisfy forall x:X :-

                     x # result = x # self + x # a;

property assert
bag of int{2,5,5,6} ++ bag of int{2,5,7} =

bag of int{2,2,5,5,5,6,7};
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Bags
Bag intersection

b1 ** b2 returns the intersection of b1 and b2. It
is defined as:
operator**(a: bag of X): bag of X
  satisfy forall x:X :-

x # result = min(x # self, x # a);

property assert
bag of int{2,5,5,6} ** bag of int{2,5,7} =

bag of int{2,5};



Tony Mullins Griffith College Dublin 9

Bags
Bag difference

b1 -- b2 returns a bag of elements x whose
frequency is max(x#b1 � x#b2,0). It is defined
as:
operator -- (a: bag of X): bag of X
  satisfy forall x:X :-

x # result = max(x # self - x # a, 0);

property assert
bag of int{2,5,5,6} -- bag of int{2,5,7}
= bag of int{5,6};



Tony Mullins Griffith College Dublin 10

Bags
Bag inclusion

b1 <<= b2 returns true if all the elements of b1
are contained in b2; false otherwise. It’s
definiton is:

  operator<<=(a: bag of X): bool
    ^= forall x::self :- x # a <= x # self;
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Bags
b.append(x) returns a new bag that is the 

same as b with the frequency of
occurrences of x is increased by 1

b.remove(x) returns a new bag that is the 
same as b with the frequency of
occurrences of x is decreased by
1, if x is an element of b.

Example
bag of int{1,2,3}.append(3) = bag of int{1,2,3,3};
bag of int{1,2,3}. remove(3) = bag of int{1,2};
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Bag Example
class BagEx ^=
abstract

var
 data : bag of int;

interface
function data;
function frequency(x : int): nat
 ^= x # data;
function cardinality : nat
  ^= #data;
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BagEx

function evenBag : bag of int
 ^= those y :: data :- y % 2 = 0;

function allPositive : bool
 ^= forall y :: data :- y > 0;
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BagEx
schema !add(x:int)
 post data! = data.append(x);
schema !add(b : bag of int)
  post
    data! = data ++ b;
build{}

post data! = bag of int{};
end;
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Specify a Purse
Specify a class to model a purse of coins. The
purse may contain multiple instances of the same
coin.

Solution
1. Specify class Coin
2. Specify class Purse
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Coin

class Coin ^=
 abstract

var
    coin : nat;
invariant
  coin in set of nat{1,2,5,10,20,50,100,200};
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Coin
interface

function coin;
redefine function toString : string
 ^=
   ([coin in set of nat{1,2,5,10,20,50}]:
        coin.toString++"Cent",
    []:
        (coin/100).toString ++ "Euro"
   );
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Coin

operator +(other:Coin):nat
    ^= coin + other.coin;

 operator +(other : nat) : nat
   ^= coin + other;
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Coin
   operator ~~(other)

   ^= coin ~~ other.coin;

build{x : nat}
 pre
     x in set of nat{1,2,5,10,20,50,100,200}
 post

 coin! = x;
end;
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Purse

A purse is a bag of coins that has the following
schemas:
– add a coin
– add a bundle of coins
– remove a coin
– remove a sum of money
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Purse
It should have functions that return:

– all the coins in the purse
– the frequency of a given coin
– the total value of a given coin
� true if a given coin is contained in the purse; false

otherwise
– the set of coins in the purse
– the total value of all coins in the purse
� true if the purse contains a bag of coins whose value

equals some given amount of money; false otherwise
– that bag of coins in the purse whose sum equals some

given value
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Purse
import "Coin.pd";
class Purse ^=
abstract

var
 purse : bag of Coin;

interface
  �
    build{}

post purse! = bag of Coin{};
build{x : bag of Coin}
   post purse! = x;

end;
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Purse
All coins in purse

function purse;

Frequency of a given coin in purse
    function freqCoin(c : Coin): nat
        ^= c # purse;

Total value of a given coin
    function valueOfCoins(c : Coin) : nat
       ^= (c # purse)*c.coin;
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Purse
Check if a given coin is contained in the purse

function contains(c : Coin) : bool
        ^= c in purse;

The set of different coins in the purse
function listOfCoin : set of Coin

       ^= purse.ran;
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Purse
Total value of all coins in the purse

function sum : nat
       ^= sum(purse);

where
function sum(p : bag of Coin)  : nat

      decrease #p
   ^=

               (  [#p = 0] : 0,
                  []: ( let t ^= any p;
                          (t + sum(p.remove(t)))
                       )
               );
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Purse
The purse contains a bag of coin whose sum equals a given
value

function containsSum(x : nat) : bool
   ^= (exists b:bag of Coin :-

      b <<= purse & sum(b) = x);
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Purse
Retrieve a bag of coin whose sum equals a given value

function bagCoins(x : nat) : bag of Coin
     pre containsSum(x)
     satisfy (result <<= purse & sum(result) = x);

Retrieve a bag of coin whose sum is at least a given value

function bagCoins1(x : nat) : bag of Coin
     pre containsSum(x)
     satisfy (result <<= purse & sum(result) >= x);
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Purse
Add Schemas

schema !add(c : Coin)
  post
     purse! = purse.append(c);

schema !add(b : bag of Coin)
  post
    purse! = purse ++ b;
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Purse
Remove Schemas

schema !take(c : Coin)
  pre c in purse
  post purse! = purse.remove(c);

schema !take(x : nat)
  pre x > 0 & containsSum(x)
  post
     purse! = purse -- bagCoins(x);
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