
 1

Developing Reliable Software using
Object-Oriented Formal Specification and Refinement

[Extended abstract prepared 24 March 2003]

Dr. David Crocker

Escher Technologies Ltd., Mallard House, Hillside Road,
Ash Vale, Aldershot GU12 5BJ, United Kingdom

dcrocker@eschertech.com
http://www.eschertech.com

Abstract. It is our view that reliability cannot be guaranteed in large, complex software systems un-
less formal methods are used. The challenge is to bring formal methods up to date with modern ob-
ject-oriented techniques and make its use as productive as traditional methods. We believe that such a
challenge can be met and we have developed the Escher Tool to demonstrate this. This paper de-
scribes some of the issues involved in marrying formal methods with an object oriented approach, de-
sign decisions we took in developing a language for object-oriented specification and refinement, and
our results in applying the tool to small and large projects.

1 The challenge of developing reliable large-scale software systems

The availability of ever more powerful processors at low prices has prompted organizations to attempt the
construction of large, complex software systems. The larger the software system, the less effective testing
is as a means of ensuring the absence of faults. Formal methods have for many years offered a logical
solution to the problem of software reliability but have generally come at a high cost, demanding develop-
ers with considerable mathematical skill and costing many additional hours of developer time to assist
with discharging proof obligations.

Our goal in developing the Escher Tool was to bring formal methods to modern object-oriented and
component-based approaches to software development while at the same time achieving developer pro-
ductivity no worse than standard informal techniques. We chose to base the system on refinement for two
reasons: firstly because of the considerable difficulties in formally analyzing programs hand-written in
conventional programming languages, and secondly because of the promise of increased productivity
provided by automating much of the refinement and all of the code generation.

2 Formal methods and object technology: a marriage made in heaven?

Opinions differ as to the essential features of object-oriented languages, but elements often cited include:
encapsulation, inheritance, polymorphism with dynamic binding, object identity, and the Liskov type
substitution principle. We will consider the implications each of these has for formal methods in turn.

 2

2.1 Encapsulation

Encapsulation is very helpful because to a large extent it permits formal verification to be done compo-
nent-by-component. Simultaneous formal analysis of both the system and all its components need only be
carried out to verify a few properties (e.g. absence of unbounded indirect recursion). Furthermore, encap-
sulation permits refinement of a component’s abstract data into efficient implementation data structures
without affecting the development or verification of the rest of the system.

2.2 Inheritance

Inheritance is easily handled formally by copying the inherited elements from the definition of the parent
class into the derived class definition.

2.3 Polymorphism and dynamic binding

These present serious challenges. When a derived class method overrides an inherited method, the tradi-
tional approach (e.g. in the Eiffel language) is to require the overriding postcondition to be a strengthening
of the inherited postcondition. However, when such an approach is used it is frequently not possible to
express in full the necessary and sufficient state changes in the postcondition, so postconditions are often
incompletely specified. This may be acceptable to static checking tools where method body code is writ-
ten by the developer, but is unacceptable in a refinement context where the method body will usually be
generated automatically from the postcondition.

Our solution is to use a two-part postcondition. One part (which we refer to as the postcondition) de-
scribes the complete state change required (including the frame) and is not inherited. The second part
(which we call a postassertion) is a predicate that must be a consequence of the first part and is subject to
the usual inheritance and overriding rules.

2.4 Object identity

Object identity is a source of serious problems due to potential aliasing between objects. For the verifier,
the possibility of aliasing makes it hard to reason about components that deal with several objects of simi-
lar type and modify one or more of those objects, unless it can be guaranteed that all the objects are dis-
tinct. For the developer, the need to consider when to use shallow equality vs. deep equality, or assign-
ment vs. cloning, is a rich source of errors.

We have observed that there are many situations in which object identity is both unnatural and undesir-
able (the classic example being a String class). By implementing value semantics by default, the problems
of aliasing are avoided. Reference semantics are available on demand where the developer has a genuine
need for object identity.

A further advantage of using value semantics by default is that there is no need for the artificial distinc-
tion between primitive types and class types that is present in traditional object-oriented programming
languages, so that types such as int and bool behave like (and are defined as) “final” classes.

The use of value semantics does impose an additional execution-time overhead due to the need to copy
objects (or, more typically, parts of objects) at times. Copying can largely be avoided by using shared
objects in the generated code and a copy-on-write mechanism; consequently we have not found the over-

 3

head to be a serious problem in commercial applications. Where speed is critical, the user has the option
of specifying reference semantics for selected objects.

2.5 Liskov type substitution principle

This principle states that wherever an object of some class is expected, an object of a derived type can be
substituted. We take issue with the safety of this principle where reliability is paramount, because it re-
quires the class hierarchy to be extremely carefully constructed if a method that expects its parameters are
of particular types is in all cases to behave correctly when it is given parameters of alternative types that
were not envisaged (any may not even have existed) when the method was written. If the declared parame-
ter type is a deferred class, the method author might reasonably be expected to cater for as yet unknown
conforming types, but what if the type is a concrete type that has been subsequently been built on? Al-
though formal specification and verification can be used to ensure correctness in these cases, specification
in the presence of polymorphism is more complex than specification when types are known exactly and it
seems unreasonable to force developers to spend additional effort in order to cater for what may only be a
distant possibility of derived classes being substituted in the future.

One solution to this issue is to enforce the practice of requiring all non-leaf classes in a class hierarchy
to be deferred (i.e. non-instantiable) so that a variable is explicitly either of a single fixed type or belongs
to a hierarchy. However, our approach is instead to distinguish between exact types and unions. In the
Escher Tool, the type “from T” is defined as the union of all non-deferred types in the set of T and its
(direct and indirect) descendents, whereas T alone means precisely the type specified in T’s class declara-
tion. We note that Ada 95 takes a similar approach, distinguishing between T and T’class.

When the user does choose to allow polymorphism (by declaring a variable or parameter of type from
T for some type T), it is necessary to ensure that the Liskov type substitution principle holds. We therefore
generate proof obligations requiring that when a method of class T is overridden in a class derived from T,
the precondition is not strengthened and the post-assertion is not weakened. This ensures that provided the
method caller satisfies the contract of the method as declared in class T, it will also satisfy the contract for
the corresponding method in any class derived from T.

3 Building safety and verifiability into an object-oriented language

From the preceding section, it is evident that traditional object-oriented programming languages are not
suited to complete formal verification (notwithstanding the achievements of advanced static analyzers
such as ESC-Java [1]). Furthermore, our goal was to combine formal specification, refinement and pro-
gramming in a single language, in order to avoid any need to switch between different syntax, semantics
and even underlying logic when moving from specification to implementation.

Our research resulted in an object-oriented specification/refinement language described in [2]. The
most commonly used object-oriented languages are full of traps for the unwary (many being present due to
an excessive desire to maintain compatibility with older languages). We were determined to produce a
safe but powerful language, resulting in the following design decisions.

 4

3.1 No side effects in expressions

Functions, operators and other expression constructs have no side effects. This not only makes evaluation
order immaterial, it simplifies formal analysis.

3.2 Overloading of operators and other methods

Used correctly, overloading is a powerful tool, but it interacts disastrously with automatic type conversion
and default parameters. Therefore we do not provide automatic type conversions (save for the widening of
one type to a union that includes that type) or default parameters. Furthermore, we do not permit the dec-
laration of a set of overloaded declarations such that it is possible to construct a parameter list that
matches more than one of them.

3.3 Casts

Casting constructs are essential in a system using class hierarchies. In addition to type comparison opera-
tors, we provide two type-casting operators. The “as” operator widens a type to a union that includes the
original type. The “is” casting operator provides a type narrowing conversion (asserting that the actual
type of the expression concerned conforms to the specified type); naturally a proof obligation is generated
every time it is used.

3.3 Unions

We have already described our definition of the construct “from T” in terms of a union of classes. We
also provide a type union operator, allowing variables of united types to be declared. The use of such
unions is completely safe because their use is formally verified (values of united types are extracted using
an is-cast); however we find they are rarely needed (save for the very common case of uniting void with
another type) because a class hierarchy normally provides a better solution.

4 Improving the Productivity of Formal Methods

Two of the barriers to the widespread adoption of formal methods have been the low productivity they are
perceived to offer and the mathematical skills they demand of their users. Software development organiza-
tions have been reluctant to bear these costs except in safety-critical areas where the benefits of improved
reliability provide an adequate payback.

We believe it is possible in principle for formal methods to provide substantially greater productivity
than non-formal development. Our approach to raising productivity is to automate as much of the imple-
mentation and verification processes as possible. A combination of recent advances in automated reason-
ing technology, cheap processor power and careful language design has allowed us to come near to our
target of 100% automated proofs. Automated refinement is also offered by the Escher Tool so that many
components can be generated directly from their specifications.

By avoiding the need for developers to assist in discharging proof obligations, the requirement for us-
ers to have substantial mathematical skills is eliminated. We therefore use syntax more reminiscent of

 5

programming than mathematics to describe specifications so as to increase the accessibility of the system
to ordinary software developers.

Loops are a particular problem because of the need for knowledge of a loop invariant when performing
verification. Although there has been some research on automated determination of loop invariants [3], it
is impossible to avoid the need for users to declare loop invariants in more complex cases. Fortunately,
the presence in the language of elements such as quantifiers and comprehension operators, together with
automated refinement, means that it is rarely necessary to code loops explicitly.

5 Results and experience

Our research and development led to the Escher Tool being previewed in September 1999 at the World
Congress of Formal Methods and commercially released in September 2001 under the product name Per-
fect Developer.

Aside from academic examples, the Escher Tool has been used to implement real-world systems in-
cluding a terminal emulator and the Escher Tool itself. Here are some statistics on these two, very differ-
ent, projects:

 Terminal Emulator Escher Tool

Lines of specification and refinement1 3 148 129 000
Lines of generated C++ 2 6 928 225 000
Number of proof obligations generated 1 456 125 924
% automatically discharged 96.8% 90.3%
Time to process obligations3 48 minutes 229 hours
Loop multiplication factor4 15 13

The Escher tool is under continuous development and is a moving target for verification, which is why the
percentage of unproven obligations remaining is substantially greater than for the terminal emulator. Ex-
perience in other projects has shown us that in order to achieve a very high degree of automated valida-
tion, it is necessary to freeze the development for a time and concentrate on dealing with validation fail-
ures. Analysis of a sample of validation failures from the Escher Tool revealed that about 60% are genu-
inely unprovable due to incomplete preconditions or class invariants, but it has been the case that as fast as
we fix them, new ones are introduced as we add new functionality but fail to get some of the preconditions
exactly right first time.

In both projects, proof failures have highlighted significant problems. For the terminal emulator, an in-
consistency in the 5-year old protocol specification document was revealed; while a proof failure for the
Escher Tool uncovered a language design flaw that could have resulted in the generated C++ failing to
compile.

Although our automated refinement technology is in its early stages of development, we have found
that manual refinement is only needed for a small proportion of the classes in a system. For example, the

1 Including comments
2 Not commented except for heading; no formatting of long expressions/statements apart from line wrap at 120 char-

acters
3 Using a PC with 1.3GHz AMD processor and 512Mb memory
4 Number of loops in the generated C++ divided by number of explicit loops in the source, to nearest integer

 6

Escher Tool contains a compiler element (which includes the refinement and code generation subsystems)
and a verification element. Despite the fact that the compiler is constructed almost entirely using classes
and methods for which no refinement has been manually written, it is able to compile and generate code
for the entire Escher Tool in only a few minutes (compared with the several hours needed to compile the
resulting C++ code). This also reinforces our view that the overhead associated with using value semantics
in place of reference semantics is not severe. The verifier is more heavily refined due to the processor-
intensive nature of automated theorem proving; nevertheless the majority of class methods involved are
not manually refined.

Conclusions and further work

We have shown that it is possible to develop a large, complex program in reasonable time using formal
methods merged with object technology, and that automated reasoning can be used to successfully dis-
charge a very high proportion of the generated proof obligations on a modern PC. The commercial prod-
uct Perfect Developer is now in its second major version, featuring an improved automated theorem
prover using backtrack-free splitting [4] and a facility to generate skeleton specifications from imported
UML models.

Code generation is currently restricted to C++ and Java. Ada 95 code generation is partially imple-
mented, however the infamous Ada “with-ing” problem [5] prevents the completion of this work pending
a revision to the Ada language to address this limitation.

Our main focus is now directed towards further automating refinement, our goal being to fully automate
the refinement of class methods in almost all cases, leaving data refinement as the main developer contri-
bution to implementation efficiency.

Another important area of research is to analyze verification failures and attempt to suggest fixes to the
source. We note that some work has already been done in this field [6] in relation to ESC/Java.

The construction of programs that are proven to conform to formal specifications is of little value if the
specifications do not fulfill user requirements. Some requirements are easy to express as expected behav-
iors of the system and these can be formally verified, but other categories of requirements prove more
elusive. We are working in partnership with a company specializing in formal requirements to address this
part of the development process.

References

1. ESC/Java User's Manual. Technical Note 2000-002, Compaq Systems Research Center, October 2000, K. Rus-
tan M. Leino, Greg Nelson and James B. Saxe. See http://research.compaq.com/SRC/esc/

2. Perfect Developer Language Reference Manual. July 2002, Escher Technologies Ltd. Available at:
http://www.eschertech.com/product_documentation/LanguageReferenceManual.htm

3. Invariant Discovery via Failed Proof Attempts. 1998, Jamie Stark and Andrew Ireland LNCS 1559, p. 271 ff.
4. Splitting without Backtracking, A. Riazanov, A. Voronkov, University of Manchester, CSPP-10.
5. John Volan’s answers to Frequently Asked Questions about the Ada “with-ing” Problem, June 1997. Available

at http://www.eschertech.com/WithingProblem.htm
6. Houdini, an annotation assistant for ESC/Java. SRC Technical Note 2000-003, Cormac Flanagan and

K. Rustan M. Leino. See http://research.compaq.com/SRC/esc/relatedTools.html

